Extensions 1→N→G→Q→1 with N=C32 and Q=Dic6

Direct product G=N×Q with N=C32 and Q=Dic6
dρLabelID
C32×Dic672C3^2xDic6216,135

Semidirect products G=N:Q with N=C32 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C32⋊Dic6 = He32Q8φ: Dic6/C2D6 ⊆ Aut C32726-C3^2:Dic6216,33
C322Dic6 = C33⋊Q8φ: Dic6/C3Q8 ⊆ Aut C32248C3^2:2Dic6216,161
C323Dic6 = He33Q8φ: Dic6/C4S3 ⊆ Aut C32726-C3^2:3Dic6216,49
C324Dic6 = He34Q8φ: Dic6/C4S3 ⊆ Aut C32726C3^2:4Dic6216,66
C325Dic6 = C334Q8φ: Dic6/C6C22 ⊆ Aut C3272C3^2:5Dic6216,130
C326Dic6 = C335Q8φ: Dic6/C6C22 ⊆ Aut C32244C3^2:6Dic6216,133
C327Dic6 = C3×C322Q8φ: Dic6/Dic3C2 ⊆ Aut C32244C3^2:7Dic6216,123
C328Dic6 = C3×C324Q8φ: Dic6/C12C2 ⊆ Aut C3272C3^2:8Dic6216,140
C329Dic6 = C338Q8φ: Dic6/C12C2 ⊆ Aut C32216C3^2:9Dic6216,145

Non-split extensions G=N.Q with N=C32 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C32.Dic6 = C36.C6φ: Dic6/C4S3 ⊆ Aut C32726-C3^2.Dic6216,52
C32.2Dic6 = C9⋊Dic6φ: Dic6/C6C22 ⊆ Aut C32724-C3^2.2Dic6216,26
C32.3Dic6 = C3×Dic18φ: Dic6/C12C2 ⊆ Aut C32722C3^2.3Dic6216,43
C32.4Dic6 = C12.D9φ: Dic6/C12C2 ⊆ Aut C32216C3^2.4Dic6216,63

׿
×
𝔽